Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.
translated by 谷歌翻译
Neural Radiance Field (NeRF) has widely received attention in Sparse-View Computed Tomography (SVCT) reconstruction tasks as a self-supervised deep learning framework. NeRF-based SVCT methods represent the desired CT image as a continuous function of spatial coordinates and train a Multi-Layer Perceptron (MLP) to learn the function by minimizing loss on the SV sinogram. Benefiting from the continuous representation provided by NeRF, the high-quality CT image can be reconstructed. However, existing NeRF-based SVCT methods strictly suppose there is completely no relative motion during the CT acquisition because they require \textit{accurate} projection poses to model the X-rays that scan the SV sinogram. Therefore, these methods suffer from severe performance drops for real SVCT imaging with motion. In this work, we propose a self-calibrating neural field to recover the artifacts-free image from the rigid motion-corrupted SV sinogram without using any external data. Specifically, we parametrize the inaccurate projection poses caused by rigid motion as trainable variables and then jointly optimize these pose variables and the MLP. We conduct numerical experiments on a public CT image dataset. The results indicate our model significantly outperforms two representative NeRF-based methods for SVCT reconstruction tasks with four different levels of rigid motion.
translated by 谷歌翻译
近年来,由于其在数字人物,角色产生和动画中的广泛应用,人们对3D人脸建模的兴趣越来越大。现有方法压倒性地强调了对面部的外部形状,质地和皮肤特性建模,而忽略了内部骨骼结构和外观之间的固有相关性。在本文中,我们使用学习的参数面部发电机提出了雕塑家,具有骨骼一致性的3D面部创作,旨在通过混合参数形态表示轻松地创建解剖上正确和视觉上令人信服的面部模型。雕塑家的核心是露西(Lucy),这是与整形外科医生合作的第一个大型形状面部脸部数据集。我们的Lucy数据集以最古老的人类祖先之一的化石命名,其中包含正牙手术前后全人头的高质量计算机断层扫描(CT)扫描,这对于评估手术结果至关重要。露西(Lucy)由144次扫描,分别对72名受试者(31名男性和41名女性)组成,其中每个受试者进行了两次CT扫描,并在恐惧后手术中进行了两次CT扫描。根据我们的Lucy数据集,我们学习了一个新颖的骨骼一致的参数面部发电机雕塑家,它可以创建独特而细微的面部特征,以帮助定义角色,同时保持生理声音。我们的雕塑家通过将3D脸的描绘成形状混合形状,姿势混合形状和面部表达混合形状,共同在统一数据驱动的框架下共同建模头骨,面部几何形状和面部外观。与现有方法相比,雕塑家在面部生成任务中保留了解剖学正确性和视觉现实主义。最后,我们展示了雕塑家在以前看不见的各种花式应用中的鲁棒性和有效性。
translated by 谷歌翻译
纵向胎儿脑图集是理解和表征胎儿脑发育过程的复杂过程的强大工具。现有的胎儿脑图通常由离散时间点上的平均大脑图像构建,随着时间的流逝。由于样品在不同时间点的样品之间的遗传趋势差异,因此所得的地图遇到了时间不一致,这可能导致估计时间轴脑发育特征参数的误差。为此,我们提出了一个多阶段深度学习框架,以解决时间不一致问题作为4D(3D大脑体积 + 1D年龄)图像数据剥夺任务。使用隐式神经表示,我们构建了一个连续无噪声的纵向胎儿脑图集,这是4D时空坐标的函数。对两个公共胎儿脑图集(CRL和FBA-中心地图酶)的实验结果表明,所提出的方法可以显着提高Atlas时间一致性,同时保持良好的胎儿脑结构表示。另外,连续的纵向胎儿大脑图石也可以广泛应用于在空间和时间分辨率中生成更精细的4D图谱。
translated by 谷歌翻译
荧光显微镜是促进生物医学研究发现的关键驱动力。但是,随着显微镜硬件的局限性和观察到的样品的特征,荧光显微镜图像易受噪声。最近,已经提出了一些自我监督的深度学习(DL)denoising方法。但是,现有方法的训练效率和降解性能在实际场景噪声中相对较低。为了解决这个问题,本文提出了自我监督的图像denoising方法噪声2SR(N2SR),以训练基于单个嘈杂观察的简单有效的图像Denoising模型。我们的noings2SR Denoising模型设计用于使用不同维度的配对嘈杂图像进行训练。从这种训练策略中受益,Noige2SR更有效地自我监督,能够从单个嘈杂的观察结果中恢复更多图像细节。模拟噪声和真实显微镜噪声的实验结果表明,噪声2SR优于两个基于盲点的自我监督深度学习图像Denoising方法。我们设想噪声2SR有可能提高更多其他类型的科学成像质量。
translated by 谷歌翻译
在目前的工作中,我们提出了一个自制的坐标投影网络(范围),以通过解决逆断层扫描成像问题来从单个SV正弦图中重建无伪像的CT图像。与使用隐式神经代表网络(INR)解决类似问题的最新相关工作相比,我们的基本贡献是一种有效而简单的重新注射策略,可以将层析成像图像重建质量推向监督的深度学习CT重建工作。提出的策略是受线性代数与反问题之间的简单关系的启发。为了求解未确定的线性方程式系统,我们首先引入INR以通过图像连续性之前限制解决方案空间并实现粗糙解决方案。其次,我们建议生成一个密集的视图正式图,以改善线性方程系统的等级并产生更稳定的CT图像解决方案空间。我们的实验结果表明,重新投影策略显着提高了图像重建质量(至少为PSNR的+3 dB)。此外,我们将最近的哈希编码集成到我们的范围模型中,这极大地加速了模型培训。最后,我们评估并联和风扇X射线梁SVCT重建任务的范围。实验结果表明,所提出的范围模型优于两种基于INR的方法和两种受欢迎的监督DL方法。
translated by 谷歌翻译
本文使用模型预测控制(MPC)来优化三度(DOF)机器人臂的输入扭矩,从而使其能够运行到目标位置并准确地掌握对象。单眼相机首先用于识别物体的颜色和深度。然后,通过坐标转换组合了对象的反向运动学计算和对象的空间坐标,以获取每个伺服器所需的旋转角度。最后,得出了机器人臂结构的动态模型,并应用模型预测控制以模拟伺服器的最佳输入扭矩以最大程度地减少成本函数。
translated by 谷歌翻译
新兴的元应用需要人类手的可靠,准确和逼真的复制品,以便在物理世界中进行复杂的操作。虽然真实的人手代表了骨骼,肌肉,肌腱和皮肤之间最复杂的协调之一,但最先进的技术一致专注于仅建模手的骨架。在本文中,我们提出了Nimble,这是一种新型的参数手模型,其中包括缺少的密钥组件,将3D手模型带入了新的现实主义水平。我们首先在最近的磁共振成像手(MRI手)数据集上注释肌肉,骨骼和皮肤,然后在数据集中的单个姿势和受试者上注册一个体积模板手。敏捷由20个骨头组成,作为三角形网格,7个肌肉群作为四面体网眼和一个皮肤网。通过迭代形状的注册和参数学习,它进一步产生形状的混合形状,姿势混合形状和关节回归器。我们证明将敏捷性应用于建模,渲染和视觉推理任务。通过强制执行内部骨骼和肌肉以符合解剖学和运动学规则,Nimble可以使3D手动画为前所未有的现实主义。为了建模皮肤的外观,我们进一步构建了一个光度法,以获取高质量的纹理和正常地图,以模型皱纹和棕榈印刷。最后,敏捷还通过合成丰富的数据或直接作为推理网络中的可区分层来使基于学习的手姿势和形状估计受益。
translated by 谷歌翻译
虽然大多数当前的图像支出都进行了水平外推,但我们研究了广义图像支出问题,这些问题将视觉上下文推断出给定图像周围的全面。为此,我们开发了一个新型的基于变压器的生成对抗网络,称为U-Transformer,能够扩展具有合理结构和细节的图像边界,即使是复杂的风景图像。具体而言,我们将生成器设计为嵌入流行的Swin Transformer块的编码器到二次结构。因此,我们的新型框架可以更好地应对图像远程依赖性,这对于广义图像支出至关重要。我们另外提出了U形结构和多视图时间空间预测网络,以增强图像自我重建以及未知的零件预测。我们在实验上证明,我们提出的方法可以为针对最新图像支出方法提供广义图像支出产生可吸引人的结果。
translated by 谷歌翻译
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
translated by 谷歌翻译